Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 97

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Circumstances of establishment of regulations for near surface disposal of radioactive waste generated from research facilities, etc.

Sakai, Akihiro

Dekomisshoningu Giho, (64), p.24 - 33, 2023/05

Japan Atomic Energy Agency (JAEA) has proceeded with the project of near surface disposal of radioactive waste generated from research facilities, etc. as the implementing body. On the other hand, Nuclear Regulation Authority (NRA) has established the safety regulations and standards for the operation of the disposal facilities. This report outlines the disposal project of JAEA and the development of the regulations and standards for the disposal by NRA.

Journal Articles

Status of decommissioning for prototype ATR Fugen and FBR Monju

Ito, Kenji; Kondo, Tetsuo; Nakamura, Yasuyuki; Matsuno, Hiroki; Nagaoki, Yoshihiro; Sakuma, Yuichi

Dekomisshoningu Giho, (63), p.1 - 26, 2022/05

The prototype advanced thermal reactor Fugen entered into the decommissioning phases with the approval of the decommissioning plan in February 2008. The prototype fast breeder reactor Monju entered into the decommissioning stage with the approval of the decommissioning plan in March 2018. In April 2018, the head office of Tsuruga decommissioning demonstration was newly established to oversee the decommissioning operations in Tsuruga area, and decommissioning projects for two unique reactors have progressed safely and steadily.

Journal Articles

Development of the treatment method for difficult wastes aimed at decommissioning of JMTR; Structural materials of reactor and used ion-exchange resins

Seki, Misaki; Nakano, Hiroko; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; Takeuchi, Tomoaki; Ide, Hiroshi; Tsuchiya, Kunihiko

Dekomisshoningu Giho, (62), p.9 - 19, 2020/09

Japan Materials Testing Reactor (JMTR) has been contributing to various research and development activities such as the fundamental research of nuclear materials/fuels, safety research and development of power reactors, and radioisotope production since the beginning of the operation in 1968. JMTR, however, was decided as a one of decommission facilities in April 2017 and it is taken an inspection of a plan concerning decommissioning because the performance of JMTR does not confirm with the stipulated earthquake resistance. As aluminum and beryllium are used for the core structural materials in JMTR, it is necessary to establish treatment methods of these materials for the fabrication of stable wastes. In addition, a treatment method for the accumulated spent ion-exchange resins needs to be examined. This report describes the overview of these examination situations.

Journal Articles

Safety demonstration project on disposing of contaminated soil in Tokai-mura

Murata, Chinatsu; Kitahara, Masaru; Tanaka, Kiwamu; Amazawa, Hiroya; Takebe, Shinichi; Yamada, Osamu*; Kameo, Yutaka

Dekomisshoningu Giho, (62), p.20 - 31, 2020/09

On the basis of Act on Special Measures, municipalities stripped surface soil off the playground of park to decontaminate the soil which had been contaminated with radionuclides released from Fukushima Daiichi Nuclear Power Plant. To minimize the exposure dose of the residents, it was essential to decide safe disposal of the contaminated soil which has been stored at temporary storage areas. Therefore, the ministry of the Environment and Tokai-mura office required Japan Atomic Energy Agency (JAEA) to perform demonstration project of burying the contaminated soil generated by decontamination of public facilities in order to provide decision on the enforcement ordinance and guidelines of burying it. In this project, we acquired data of air dose rate and the personal exposure dose during transporting, burying, and storing the contaminated soil. In addition, we measured radioactivity concentration of dust collected from surroundings of the landfill and seepage water through contaminated soil.

Journal Articles

Decommissioning program and future plan for Research Hot Laboratory, 3

Shiina, Hidenori; Ono, Katsuto; Nishi, Masahiro; Uno, Kiryu; Kanazawa, Hiroyuki; Oi, Ryuichi; Nihei, Yasuo

Dekomisshoningu Giho, (61), p.29 - 38, 2020/03

The Research Hot Laboratory (RHL) in Japan Atomic Energy Agency (JAEA) was constructed in 1961, as the first one in Japan, to perform the examinations of irradiated fuels and materials. RHL consists of 10 heavy concrete cells and 38 lead cells. RHL contributed to research and development program in or out of JAEA for the investigation of irradiation behavior for fuels and nuclear materials. However, RHL is the one of target as the rationalization program for decrepit facilities in former Tokai institute. Therefore the decommissioning works of RHL started on April 2003. The dismantling of 12 lead cells has been progressing since 2010. The dismantling procedure of lead cells was performed in the following order. The peripheral equipment in lead cells were removed and contamination survey of the inner surface of the cells. Then, the backside shield doors were extracted. The lifting frame for the isolation tent was set on the cells. After that, the ceiling plates, isolation walls and lead blocks were removed. The strippable paint was used to remove permeable contamination on the inner surface of structural steel of the cells. The dismantling work will be continued to mention the efficiency of decommissioning works and reduction of radioactive waste with ensuring safety.

Journal Articles

Current status of JAEA Ningyo-toge Decommissioning Project

Yagi, Naoto; Mita, Yutaka; Kanda, Nobuhiro

Dekomisshoningu Giho, (61), p.2 - 11, 2020/03

Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency has been conducting research and development on uranium exploration, uranium mining, uranium refining / conversion, and uranium enrichment. Currently, our Center has completed its initial mission and is conducting decommissioning of facilities used for R&D, and R&D for decommissioning. Of the three main facilities of our Center, the refining conversion facility and the enrichment engineering facility have already begun dismantling equipment in the facilities. The uranium enrichment demonstration plant is in the process of applying for a decommissioning plan. This report provides an overview of the current status of our Center's decommissioning.

Journal Articles

Technology demonstration of sampling from reactor core structure of FUGEN Decommissioning Engineering Center

Iwai, Hiroki; Soejima, Goro; Takiya, Hiroaki; Awatani, Yuto; Aratani, Kenta; Miyamoto, Yuta; Tezuka, Masashi

Dekomisshoningu Giho, (61), p.12 - 19, 2020/03

FUGEN Decommissioning Engineering Center received the approval of the decommissioning plan in 2008, and we have been progressing the decommissioning. The first phase of decommissioning (Heavy Water and Other System Decontamination Period) finished in March 2018, and FUGEN has entered into the second phase of decommissioning (Reactor Periphery Facilities Dismantling Period). This report outlines the technology demonstration of sampling from reactor core structure of FUGEN that to prepare for reactor dismantlement in the third phase.

Journal Articles

Outline and implementation status of decommissioning plan of JRR-4

Ishikuro, Yasuhiro; Nemoto, Tsutomu; Oyama, Koji

Dekomisshoningu Giho, (60), p.8 - 16, 2019/09

JRR-4 had been shifted to decommissioning phase in December 2017 after we received the approval of the decommissioning plan of JRR-4 on June 2017 and the approval of the change of the safety regulations related to it. Decommissioning works are divided two phases and proceeded according to its plan. In the first phase, we perform reactor shutdown, fuel removal and maintenance management, and in the second phase, the dismantling works. JRR-4 was initially installed for the purpose of shielding experiments of the nuclear ship Mutsu, reached its first criticality in 1965, and had been operated for about 45 years until Dec. 2010. However, in consideration of the expenses required for the new regulatory standards implemented after the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant accident and aging degradation, the decommissioning of JRR-4 was determined according to the JAEA reform plan in Sep. 2013. This report describes the outline of the decommissioning plan of JRR-4 and the status of its implementation.

Journal Articles

Status of decommissioning of FUGEN Decommissioning Engineering Center

Takiya, Hiroaki; Aratani, Kenta; Awatani, Yuto; Ishiyama, Masahiro; Tezuka, Masashi; Mizui, Hiroyuki

Dekomisshoningu Giho, (59), p.2 - 12, 2019/03

FUGEN Decommissioning Engineering Center received the approval of the decommissioning program in 2008, and we have been progressing the decommissioning. The first phase of decommissioning (Heavy Water and Other system Decontamination Period) finished in May 2018, and FUGEN has entered into the second phase of decommissioning (Reactor Periphery Facilities Dismantling Period). This report outlines the results obtained in the first phase of decommissioning of FUGEN.

Journal Articles

Development of waste acceptance criteria and current challenges relating to the disposal project of LLW generated in research, medical and industrial facilities

Nakata, Hisakazu; Amazawa, Hiroya; Izumo, Sari; Okada, Shota; Sakai, Akihiro

Dekomisshoningu Giho, (58), p.10 - 23, 2018/09

Low level radioactive wastes are generated in the research and development of the nuclear energy, medical and industrial use of radioisotope except NPP in Japan. The disposal of wastes arising from NPP has already been implemented while not the one for wastes from research institutes etc. Japan Atomic Energy Agency therefore has been assigned an implementing organization for the disposal legally in 2008 in order to promote the disposal program as quickly and firmly as possible. Since then, JAEA has conducted their activity relating to the disposal facility design on generic site conditions and developing Waste Acceptance Criteria for LLW from research institutes. This report summarizes the WAC and current challenges.

Journal Articles

Establishment of Fukui Smart Decommissioning Technology Demonstration Base; Decommissioning Technology Demonstration Test Center (tentative name)

Muramatsu, Toshiharu; Sano, Kazuya; Terauchi, Makoto

Dekomisshoningu Giho, (57), p.65 - 74, 2018/03

The Decommissioning Technology Demonstration Test Center (tentative name) is established as a central facility of "Fukui Smart Decommissioning Technology Demonstration Base" which was adopted by the support policy "Regional Science and Technology Demonstration Base Establishment Project" of the Ministry of Education, Culture, Sports, Science and Technology in FY 2016 supplementary budget. This facility is a base to train local companies about technology concerning the decommissioning of nuclear power plants and for the industry, academia and government to contribute to the development of the regional economy and solving the problem of decommissioning under one roof, and consists of decommissioning dismantling technology verification field, laser processing advanced field and decommissioning mock-up test field. The papers introduce the outline of the facilities in each of these fields.

Journal Articles

Outline of decommissioning plan of Tokai Reprocessing Plant

Okano, Masanori; Akiyama, Kazuki; Taguchi, Katsuya; Nagasato, Yoshihiko; Omori, Eiichi

Dekomisshoningu Giho, (57), p.53 - 64, 2018/03

The construction of Tokai Reprocessing Plant (TRP) was initiated in June 1971, and its hot test using spent fuel started in September 1977. Thereafter TRP had been operated to reprocess 1,140 tons of spent fuel for approximately 30 years until May 2007, according to the reprocessing contract with domestic electric power companies. JAEA announced a policy of TRP in report of JAEA reform plan published in September 2014. The policy shows that TRP will shift to a decommissioning stage by economic reasons. Based on the policy, application of approval for TRP decommissioning plan was submitted to Nuclear Regulation Authority (NRA) in June 2017. This plan provides basic guidelines such as procedures for decommissioning and specific activities for risk reduction, and implementation divisions of decommissioning, management of spent fuels and radioactive wastes, decommissioning budget, and decommissioning schedule. The process of TRP decommissioning is planned to continue for approximately 70 years until the release of controlled areas of approximately 30 facilities.

Journal Articles

Outline of Oarai Waste Reduction Treatment Facility and volume reduction processing

Sakauchi, Hitoshi; Kikuchi, Yuki; Imaizumi, Haruki; Fukui, Yasutaka

Dekomisshoningu Giho, (57), p.34 - 42, 2018/03

OWTF (Oarai Waste Reduction Treatment Facility) is constructed for volume reduction processing and stabilization treatment of radioactive solid waste, which generate from hot facilities in Oarai Research and Development Center of Japan Atomic Energy Agency, using in-can type high frequency induction heating by remote control. In this report, we describe the outline of OWTF under construction and treatment technologies, in which incinerating and melting.

Journal Articles

Current status and issues of sodium removal and disposal from LMFR in the framework of decommissioning

Nakai, Satoru

Dekomisshoningu Giho, (56), p.14 - 28, 2017/09

Prototype fast breeder reactor power plant Monju which is under construction was decided by the Japanese government not to operate but to be decommissioned safely and surely in December 2016. In the view point of decommissioning, one of the major difference from LWR is sodium as a coolant. In the overseas such as U.K., Germany, the United States, France, there is the precedent example of decommissioning and can be referred to it. In this report, the situation and problem of overseas example about removal and disposal of sodium.

Journal Articles

The Initiative towards construction of Knowledge Management System in FUGEN Decommissioning Engineering Center

Tezuka, Masashi; Taruta, Yasuyoshi; Koda, Yuya

Dekomisshoningu Giho, (56), p.46 - 54, 2017/09

Implementation of decommissioning needs much plant information in period of Design, construction and operation. In addition, it is essential for efficient dismantling works to advance the technologies, data, lessons and learns, experiences and documents by getting through the decommissioning process. On the other hands, as workers who operated or maintained the plant are aging and retiring, their empirical knowledge has been lost. For the purpose of safety and reasonability of further decommissioning activities, Knowledge Management System (KMS) has been producing in FUGEN which is now under decommissioning. KMS is an initiative of human resources development and to pass on expertise and knowledge to the younger generations. The system based on the prototype of FUGEN aims a high versatility system available for further decommissioning facilities.

Journal Articles

Development of technologies of cutting and decontamination employing high power fiber laser

Toyama, Shinichi; Minehara, Eisuke*

Dekomisshoningu Giho, (56), p.55 - 65, 2017/09

Development of the steel cutting technology which employs high power fiber laser for the industrial applicability of the laser technology has been carried out at The Wakasa Wan Energy Research Center (WERC). At present, the laser technologies for dismantling and decontamination are concurrently being developed to the application measure of nuclear dismantling for domestic nuclear power plants in the future. Dismantling of nuclear facilities is now under the development in the world. The necessity of the technology is increasing and the development is strongly expected. Beside the relative easiness to handle compared with other laser system, suppression of production of secondary radioactive waste and dose exposure can be realized by the dramatic improvement by excelled thermal density of fiber laser. This paper provides recent results from cutting technology for thick steels aiming disassembling nuclear pressure vessel, and decontamination machine technology which works under high radiation dose, explaining the results from cutting experiment of steels and the actual equipment and from the radiation resistance experiment for component devices.

Journal Articles

Towards decommissioning of Tokai Reprocessing Plant

Yamamoto, Tokuhiro

Dekomisshoningu Giho, (55), P. 1, 2017/03

This is a prefatory note for Journal of the RANDEC (No.55, 2017). In September 2014, it was announced that the Tokai Reprocessing Plant would be toward decommissioning. Some unique features exist on decommissioning in case of reprocessing plant; for example, all of inner surface of equipment are contaminated, their contamination levels are difficult to estimate and their contaminations are eventually associated with $$beta$$-$$gamma$$ and/or $$alpha$$ nuclides. There are also some challenges arising primarily from long-term projects beyond generations. In the meantime, prioritized works will be carried out such as preparing decommissioning plans and acquiring permission, steady treatment of radioactive waste generated during reprocessing operation and decontamination of facilities. However, in the long term, it will be very important to utilize this historical opportunity of actual reprocessing plant decommissioning, so as to establish decommission technology of the nuclear fuel cycle facilities and to improve reprocessing technology through accumulation of technical data based on destructive analysis. Many people's collaboration and participation will be sincerely welcomed.

Journal Articles

Development of simple and rapid analytical method for radioactive samples by capillary electrophoresis

Haraga, Tomoko; Sato, Yoshiyuki; Kameo, Yutaka; Saito, Shingo*

Dekomisshoningu Giho, (55), p.22 - 27, 2017/03

no abstracts in English

Journal Articles

Current status of uranium measurements and their related techniques at JAEA Ningyo-toge

Ishimori, Yuu; Yokoyama, Kaoru*; Hayakawa, Tomoya; Hata, Haruhi; Sakoda, Akihiro; Naganuma, Masaki

Dekomisshoningu Giho, (55), p.36 - 44, 2017/03

This paper gives an outline of the current status of uranium measurements and their related techniques at the Ningyo-toge Environmental Engineering Center of Japan Atomic Energy Agency. The JAWAS-N and the Q$$^2$$ system have been adopted to evaluate uranium contents in the wastes. About 10 g or more of uranium in a 200 $$ell$$ drum can be evaluated by these systems. The equivalent model developed to correct the evaluation results with Q$$^2$$ system is not available to less than dozens of grams of uranium in a 200 L drum. The paper illustrates the advantage of use of the improved equivalent model which evaluates uranium content from full energy peak of 1001 keV and its Compton spectrum in order to correct the inhomogeneous distribution of uranium in measuring objects. The use of model achieved the limit of uranium quantitative determination under one tenth of those of previous evaluation methods. To determine $$^{235}$$U, it was demonstrated that the shielding factor, $$X_{geometry}$$ for evaluation of 1001 keV $$gamma$$-ray is also possible to use for evaluation of 186 keV $$gamma$$-ray. The measurement systems adopting the model have been introduced to other nuclear operators in Japan. In addition, it is also examined to use for clearance. As a related technique, feasibility studies on machine learning algorithms have been performed to classify the waste drums depending on their $$gamma$$-ray spectrum.

Journal Articles

Solidification of radioactive wastes using Alkali-activated materials "Geopolymer"

Meguro, Yoshihiro; Sato, Junya

Dekomisshoningu Giho, (54), p.48 - 55, 2016/09

Various radioactive wastes, especially liquiform, pulverized or grained one, have to be immobilized in a disposal container, and methods such as cement solidification, bituminization, etc are so far examined and have been adopted. In recent years novel inorganic solidification materials have been developed. These are named Alkali-activated materials and so geopolymer. Mainly studies of geopolymer applying to radioactive wastes as a solidification material are under research and development stage, but the cases applied to solidification of the real radioactive waste increase a lot. In this report, we briefly explain about some research studies and practical examples of the geopolymer in the field of nuclear energy, particularly those of radioactive wastes generated in Fukushima Daiichi Nuclear Power Station.

97 (Records 1-20 displayed on this page)